Nonintrusive Reduced-Order Models for Parametric Partial Differential Equations via Data-Driven Operator Inference
نویسندگان
چکیده
This work formulates a new approach to reduced modeling of parameterized, time-dependent partial differential equations (PDEs). The method employs Operator Inference, scientific machine learning framework combining data-driven and physics-based modeling. parametric structure the governing is embedded directly into reduced-order model, parameterized operators are learned via linear regression problem. result model that can be solved rapidly map parameter values approximate PDE solutions. Such models may used as surrogates for uncertainty quantification inverse problems require many forward solves PDEs. Numerical issues such well-posedness need appropriate regularization in problem considered, an algorithm hyperparameter selection presented. illustrated heat equation demonstrated FitzHugh–Nagumo neuron model.
منابع مشابه
Parametric inference for mixed models defined by stochastic differential equations
Non-linear mixed models defined by stochastic differential equations (SDEs) are considered: the parameters of the diffusion process are random variables and vary among the individuals. A maximum likelihood estimation method based on the Stochastic Approximation EM algorithm, is proposed. This estimation method uses the Euler-Maruyama approximation of the diffusion, achieved using latent auxilia...
متن کاملData-driven discovery of partial differential equations
We propose a sparse regression method capable of discovering the governing partial differential equation(s) of a given system by time series measurements in the spatial domain. The regression framework relies on sparsity-promoting techniques to select the nonlinear and partial derivative terms of the governing equations that most accurately represent the data, bypassing a combinatorially large ...
متن کاملParametric Reduced-Order Models
We address the problem of propagating input uncertainties through a computational fluid dynamics model. Methods such as Monte Carlo simulation can require many thousands (or more) of computational fluid dynamics solves, rendering them prohibitively expensive for practical applications. This expense can be overcome with reduced-order models that preserve the essential flow dynamics. The specific...
متن کاملglobal results on some nonlinear partial differential equations for direct and inverse problems
در این رساله به بررسی رفتار جواب های رده ای از معادلات دیفرانسیل با مشتقات جزیی در دامنه های کراندار می پردازیم . این معادلات به فرم نیم-خطی و غیر خطی برای مسایل مستقیم و معکوس مورد مطالعه قرار می گیرند . به ویژه، تاثیر شرایط مختلف فیزیکی را در مساله، نظیر وجود موانع و منابع، پراکندگی و چسبندگی در معادلات موج و گرما بررسی می کنیم و به دنبال شرایطی می گردیم که متضمن وجود سراسری یا عدم وجود سراسر...
Iterative Solution Methods for Reduced-order Models of Parameterized Partial Differential Equations
Title of dissertation: ITERATIVE SOLUTION METHODS FOR REDUCED-ORDER MODELS OF PARAMETERIZED PARTIAL DIFFERENTIAL EQUATIONS Virginia Forstall, Doctor of Philosophy, 2015 Dissertation directed by: Professor Howard Elman Department of Computer Science This dissertation considers efficient computational algorithms for solving parameterized discrete partial differential equations (PDEs) using techni...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: SIAM Journal on Scientific Computing
سال: 2023
ISSN: ['1095-7197', '1064-8275']
DOI: https://doi.org/10.1137/21m1452810